If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+160t-384
We move all terms to the left:
0-(-16t^2+160t-384)=0
We add all the numbers together, and all the variables
-(-16t^2+160t-384)=0
We get rid of parentheses
16t^2-160t+384=0
a = 16; b = -160; c = +384;
Δ = b2-4ac
Δ = -1602-4·16·384
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-32}{2*16}=\frac{128}{32} =4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+32}{2*16}=\frac{192}{32} =6 $
| 9x2-6x+4=0 | | 2×/3x=3×1x | | 0.5y=0.25 | | 0.1x=0.25 | | 0.2x+3.6=1.2, | | 0.3y=0.3 | | 0.88/1=12/x | | 3(y-6)-8y=32 | | 1/4h+8=9 | | 5d-12= | | 10x+5=4x-3 | | 30=g-23 | | 3b-6/2=5 | | 6+b/2=-3 | | 6b=60b= | | 2w+2=44 | | 3c+9=30 | | 7b/2=12 | | y/3+1=4/3 | | 8(x-2)+4x=10(x+1) | | (2x+6)(2x–6)=(2x+9)(3x–4) | | 8/7j=2 | | -2/7j=7j | | Y=0.5x^2-4x+6 | | 5z+8.4=2.9 | | 3^x=15/7 | | 8x+6-2x+5=41 | | r+7/3=4 | | 1/8=4^3x-2 | | H(x)=17+8/6 | | −0.10(14)+0.25x=0.05(x−4) | | 22,23,24d÷5.5=4 |